INFOSANTEHNIK.RU / Водоснабжение / Водоснабжение частного дома. Принцип работы. Схема подключения

Водоснабжение частного дома. Принцип работы. Схема подключения.

Самый распространенный вариант автоматического водоснабжения выглядит следующим образом.

Схема водоснабжения частного дома:

Подробнее на видео:

Подробнее о программе

Не можете посмотреть видео?

Подробнее о программе

Описание элементов схемы

Насос погружной роторный обладает защитой от сухого хода. Защита от сухого хода работает следующим образом: За счет теплового реле отключается питание насоса. Это тепловое реле встроено в погружной насос. Поэтому, когда будите покупать погружной насос убедитесь у продавца насоса в том, что погружной насос имеет втроенное в него тепловое реле. Поэтому реле сухого хода не требуется.

Другие методы защиты от сухого хода

Конструкция теплового реле: В тепловом реле имеется специальная конструкция, которая под действием изменения температуры изменяет положение электрических контактов. Контакты в свою очередь замыкают или размыкают контакты. И если двигатель перегревается, то тепловое реле его отключает. Отклонение контактов может быть вызвано изменением положения контактов с помощью специального сплава двух слоев имеющую разные термические характеристики за счет которого идет отклонения контактов. Либо за счет специального газа, который при нагреве расширяется и отклоняет контакты. В любом случае принцип один: При повышение температуры отключить насос.

Принцип работы теплового реле: Перегретые электромагнитные намотки передают температуру тепловому реле и реле отключает насос. А если воды нет, то и тепловое реле получает большую температуру перегрева насоса. То есть если двигатель заклинит, нет движения воды или не будет воды, то двигатель сильно перегревается и нагревает тепловое реле, а реле в свою очередь отключает насос. Примерно через 5-10 минут тепловое реле остывает, и насос снова включается. Вот на этом и основан принцип защиты насоса от сухого хода.

Плавный пуск насосов. Некоторые погружные насосы снабжены плавным пуском. Плавный пуск это способность насоса работать на полную мощность не сразу, а с постепенным увеличением мощности. Обычно мне известный насос работает так: от 0 до 2 секунд мощность увеличивается пропорционально пройденному времени (0 сек=0% Вт, 0, 5 сек.=25% Вт, 1 сек.=50% Вт, 1, 5 сек.=75% Вт, 2 сек.=100% Вт).

Причем плавный пуск и тепловое реле уже встраиваются в погружной насос и находятся в скважине и не требуют дополнительной дорогой автоматики. Плавный пуск насоса требуется в том случае, если у Вас длинный трубопровод от скважины до дома. Если длина трубы превышает 30 метров, то следует насторожиться и купить насос с плавным пуском. То есть 2 секунды плавного пуска подойдут длине труб от 30 до 100 метров трубы. Если длина труб превышает 100 метров, то следует сделать более точный расчет на перегрузки насосов и трубопровода, включая расчет расхода насоса.

Обратиться к расчетам к специалисту: Заказать услугу по расчету

Насос с тепловым реле и плавным пуском: Скважинные насосы Grundfos SQ, SQE, скачать паспорт:

Инструкция насоса Grundfos SQ

Кстати Скважинные насосы Grundfos SQ, SQE имеют достаточно маленький диаметр, чтобы подойти ко всем узким скважинам имеющие маленький диаметр. Иногда бывает так, что скважина получается из двух труб разного диаметра. А труба с маленьким диаметром находится глубоко. Поэтому в таких случаях помогут насосы Grundfos SQ, SQE. Диаметр насоса составляет 74 мм. Минимальный диаметр скважины 76мм

Насос со встроенным обратным клапаном. Многие производители включая и Grundfos снабжают насосы обратными клапанами. Но если необходимо убрать этот обратный клапан, то это можно сделать. В инструкции указывают просто перекусить опоры, которые держат клапан и клапан извлекается из насоса.

Удаление обратного клапана нужно в тех случаях, если необходимо создать условия, при котором можно было бы спускать воду обратно в скважину за тем, чтобы оставить трубопровод без воды. (на зимние условия при отключения отопления). При большой высоте возможны гидравлические удары.

Обратный клапан

Принцип работы обратного клапана: Пропускать воду только в одном направление. То есть если бы в системе автоматического водоснабжения отсутствовал обратный клапан, то при отключение насоса вода обратно уходила в скважину. Часто ставят два обратных клапана, за тем, чтобы наверняка исключить обратное движение воды в скважину.

Оголовок скважинный

Но на практике чаще всего покупаем такой вариант оголовка:

Скачать с хорошим разрешением

Часто резиновый манжет не может залезть на скважинную трубу. Нужно приложить или большую силу со смазкой для уменьшения трения. Или срезать часть резины острым ножиком (лезвием). На практике чаще срезали примерно 5-10 мм. резины с внутренней части кольца.

Назначение оголовка в том, чтобы зафиксировать трубы и насос на скважинной трубе.

Чаще всего в комплекте с насосом идет капроновая нить для того, чтобы зафиксировать насос на оголовке. Но мы чаще всего используем стальной трос. Существует, конечно, трос нержавеющий, а бывает трос покрытый изоляционным слоем от коррозии. Поэтому на Ваше усмотрение, что Вы будите использовать. Можно как нить использовать, так и трос. Трос крепиться через специальные зажимные тросы.

Труба ПНД

ПНД – полиэтилен низкого давления. Используется для транспортировки холодной воды. Также подходит для прокладки трубопровода от скважины до дома. Мы на практике чаще всего использовали ПНД только там, где возможен ремонт трубы. А там где под землей использовали металлопластиковую трубу.

Трубопровод от скважины до дома теплоизолируется трубным теплоизолятором: Энергофлекс и его аналоги.

Теплоизолятор трубный

Фильтр грязевик

В большей степени служит для страховки того, чтобы в систему реле давления не попадала крупная крошка мусора и не заклинило его. Также часто при ремонте насоса можно отсоединять трубу и есть вероятность занести в трубопровод какой-нибудь мусор. Дык вот фильтр грязевик служит только для этих целей. Так как в насосе уже присутствует фильтр сетчатый, который не пропускает мусорную крошку. Фильтр грязевик чаще всего не засоряется потому что в насосе уже имеется подобный сетчатый фильтр.

Такие фильтры имеют стеку с пропускной способностью чаще всего 400-500 мкм. (микрометров 1/1000000 метра.). Для того, чтобы исключить попадания в систему только крупной крошки мусора. Если стальную сетку сделать пропускную способность меньше 300 мкм. Велика вероятность частой чистки фильтра. Поэтому для тех фильтров, у которых пропускная способность меньше 300 мкм снабжены специальным промывным механизмом. То есть краном слива мусора.

А на некоторых промывных фильтрах установлены манометры, которые позволяют по отклонениям стрелок определить степень засора фильтра. Чем больше отклонение, тем сильнее забит фильтр.

В таком фильтре, возможно использовать сетку с пропускной способностью 200 мкм.

Многие опытные сантехники могут предложить за место фильтра грязевика поставить фильтр сетчатый промывной – скажу, что это банальная трата денег. Также промывной фильтр по степени очистки отличается максимум в два раза. То есть степень очистки фильтра грязевика 500 мкм. А промывного 200 мкм.

Реле давления

С годами реле давления забивается мелкой крошкой (мусором) и реле начинает клинеть. Это происходит из-за того что мельчайшие песчинки грязи накапливаются в камере реле давления. В связи с этим механизм не может сдвинуться до необходимого значения для включения насоса. Бывает загрязнения накапливаются даже через один год, а бывает и 10 лет не хватает для засора. То есть все зависит от подземной воды. Такие засоры могут быть вызваны стальными трубами, которые с годами выделяют ржавые крошки мусора.

Фильтр грязевик не помогает избежать этого. Даже если Вы вперед реле давления поставите фильтр тонкой очистки, у Вас все равно будет скопление мельчайшего мусора в камере реле давления. У меня был клиент, и я ему сделал автоматику с фильтром спереди, практика показала - не помогает.

Пример из практики:

То есть фильтр тонкой очистки не справляется с мелкой крошкой мусора.

Есть один выход из положения (против засора реле давления), это вынести реле давления на отдельную ветку трубопровода. И исключить попадания и оседания мельчайшего мусора.

Мельчайший мусор не сможет подниматься вверх и часть пространства воды и фильтр грязевик не смогут перемешать мельчайший мусор для оседания в камере реле давления.

Принцип работы реле давления

У данного устройства имеются пороги включения и отключения. То есть, при достижение нижнего порога давления контакты замыкаются, а при превышение верхнего порога давления контакты размыкаются. Тем самым включая и отключая насос.

Пример работы реле давления (последовательное действие)

Давление равно 0 Bar => Контакты реле замкнуты => Питание насоса 220 Вольт => Повышение давления => Достигая 2, 8 Bar контакты размыкаются => Питание насоса прекращается => Насос не работает.

Потребление воды => Давление падает => Достигая 1.4 Bar контакты замыкаются => Питание насоса 220 Вольт => Повышение давления => Достигая 2, 8 Bar контакты размыкаются => Питание насоса прекращается => Насос не работает.

По умолчанию эти пороги равны: (Заводские настройки) Нижний 1.4 Bar, верхний порог давления равен 2.8 Bar. Диапазон давления 1-5 Bar.

Скачать инструкцию к применению данного реле PM5 и РДМ5: Паспорт инструкция реле давления

Настройка реле давления

Если глобально: Гайка регулирования дифференциала давления увеличивает или уменьшает разницу между порогами вкл/выкл. То есть, если затягивать пружину, то будет увеличена разница между порогами (P2-P1).

Пример настройки маленькой пружины,

P1 – Нижний порог включения (замыкание контактов) (по умолчанию P1=1, 4 Bar)

P2 – Верхний порог отключения (размыкание контактов) (по умолчанию P2=2, 8 Bar)

P3 – Разница между порогами (P2-P1)=(2.8-1.4)=1.4 Bar

Пример затягивания маленькой пружины приводит к увеличению P1 и увеличению P2. С той лишь разницей, что P2 увеличится больше. В итоге мы получаем увеличение разницы между P1 и P2. Разница равна (P2-P1).

Предположим, что давление P1 увеличилось до 1, 6 Bar? тогда как P2 увеличилось до 3, 4 Bar. (3, 4-1, 6)=1, 8 Bar. Тем самым мы увеличили разницу между порогами (P2-P1).

Пример настройки большой пружины,

Затягивая большую пружину, мы увеличиваем давление обоих порогов с той лишь разницей, что P1 увеличивается больше. То есть мы больше регулируем порог давления P1.

Итог: Большая пружина больше влияет на P1, а маленькая пружина больше влияет на P2.

Пример настройки обоих пружин

1. Для начала настраиваем нижний порог P1. Увеличиваем или уменьшаем силу большой пружины, добиваясь нужного давления.

2. Потом настраиваем верхний порог P2. Увеличиваем или уменьшаем силу маленькой пружины, добиваясь нужного давления.

3. При регулировке маленькой пружины изменился порог нижнего давления P1. Цикл настройки повторяется, чтобы добиться необходимых порогов.

Электрическая схема подключения реле давления

Заземление в большей степени защищает человека от удара током в случаях контакта фазы в корпус. А также защищает устройства от побочных действий контакта фазы о корпус. И только, если в системе электрического узла присутствует дифференциальный автомат. Который зарегистрирует контакт фаза-земля и отключит питание сети.

Если Вы не подключите контакт земля (Pe) у Вас все равно будет работать насос. Потому что чаще всего заземление служит зля защиты человека от удара током и побочных действий контакта фаза-земля(корпус).

Фильтры

Как видите выбор их велик, а для магистральных фильтров с хорошей пропускной способностью выбирается диаметр не менее 1” дюйма (вн. диаметр=25мм.).

Для нашей схемы подходят следующие магистральные фильтры (kristal):

В них вставляются только картриджи механической очистки:

Картриджи химической и другой очистки в магистральные колбы не вставляются. Для того, чтобы очистить воду для приема внутрь используют 3х или 5ти ступенчатые фильтры для получения питьевой воды. Подробнее:

Фильтры для очистки воды

Картриджи механической (тонкой) очистки используется с пропускной способность от 5 до 20 мкм.(микрометров). 1 мм.=1000 мкм. Это намного меньше, чем дают фильтры грязевики(500 мкм.) и промывные фильтры (200 мкм.). А значит, имеется возможность получать более очищенную воду от мелкозернистого песка.

Почему впереди автоматики не стоит ставить фильтры? Фильтры типа фильтра грязевика, промывного фильтра и магистральных фильтров тонкой очистки.

Ответ: Потому что фильтр создает гидравлическое сопротивление. Фильтр грязевик и промывной фильтр может достигать 10 КМС, фильтр тонкой очистки от 1 КМС и более, в зависимости от засора фильтра.

Что такое КМС?

То есть на линии насос-гидроаккумулятор не должны находиться элементы, которые создают явное гидравлическое сопротивление. Так как расход на линии насос гидроаккумулятор всегда должен быть хорошим. Если фильтр будет засорен это приведет к тому, что насос будет работать в нагрузку. Попадание мусора в гидроаккумулятор это не страшно.

Но фильтр грязевик допускается устанавливать, так как при монтаже или ремонте в трубопровод может попадать различный мусор. Этот фильтр гряезвик не пропустит непредвиденный мусор. Так же фильтр грязевик с пропускной способностью 500 мкм не засоряется, так как в погружном насосе уже присутствует сетчатый фильтр. В итоге фильтр грязевик на входе служит только гарантом от не предвиденного мусора в системе.

Поэтому конечно рекомендуется такая схема.

Как уже говорилось в данной схеме отсутствует фильтр грязевик на линии насос-гидроаккумулятор, что увеличивает показатели пропускной способности. А фильтр грязевик на линии реле давления служит своеобразной защитой от попадания мусора в камеру реле давления.

Краны на линии насос-гидроаккумулятор строго запрещены.

При закрытом кране насос будет продолжать работать и это будет вызывать очень большие давления в трубопроводе на линии насос-гидроаккумулятор. Реле давления не будет регистрировать давление, так как шаровый кран не даст этого сделать. Просто защитите себя от дурака и не ставьте кран. Потому что рано или поздно найдется какой-нибудь человек, который закроет кран при работающей автоматике насоса.

Защита от гидравлического удара с помощью предохранительного клапана.

Гидроудар может возникать, если гидроаккумулятор выходит из нормальной работы. То есть, когда насос включается, гидроаккумулятор не забирает на себя избыток давления. Другими словами это своеобразная защита трубопровода от гидравлического удара. То давление, которое может создаться будет выброшено через предохранительный клапан.

Если давление водоснабжение примерно в диапазоне 1, 5-5, 5 Bar. То не трудно предположить, что давление срабатывания должно быть 6-7 Bar. Чтобы исключить потоп, необходимо чтобы насос не смог превысить давление в 6 Bar.

В частном доме давление достаточно держать не более 3 Bar. Но если вдруг реле давления не правильно отреагирует или не отключит его до 3 Bar, то не трубно предположить, что давление может достигнуть 6 Bar при условие, что напор насоса достаточен для этого. И тогда будет потом. А чтобы исключить потом, то нужно предохранитель подключить в канализационную трубу. Чтобы излишки воды уходили в канализацию.

Гибкий шланг к гидроаккумулятору

Гидроаккумулятор. Принцип работы, назначение и настройка.

За место трубопровода можно использовать гибкий шланг. Это резиновый шланг покрытый стальной проволокой, для того чтобы сдержать расширение резины.

Мы не используем гибкий шланг по двум причинам:

1. Не всегда его возможно купить на рынке. То есть иногда нужно очень постараться, чтобы найти нужную длину и размер.

2. Подобные гибкие шланги когда-то показали свою не состоятельность в прочности стали. То есть они могли с годами просто надломиться или треснуть, что вызывало больше потопы.

Погружной насос

Существуют два типа погружных насосов, которые между собой отличаются:

1. Вибрационный насос типа малыш

2. Погружной роторный наосос.

Некоторые насосы обладают защитой насоса от сухого хода. Тепловое реле. Как работает тепловое реле было описано выше.

А также обладают функцией плавного пуска, например насос GRUNDFOS и составляет 2 секунды. Эта функция подойдет тем, у кого длина трубы от скважины до дома достигает свыше 30 метров. Было описано выше.

Если стоит выбор между насосами: Вибрационным и роторным, то выбираем роторный насос. Вибрационный насос это своеобразная дешевая игрушка.

Во-первых, вибрационный насос работает как поршневой насос, в котором идет постоянная вибрация. А вибрация в некоторых скважинах очень губительна. Вибрация способствует быстрому зарастанию песка в скважине. И никакие фильтры в скважинных трубах не помогут от обрушения песка и ила. Так как на сегодняшний день в скважинных трубах делаются простые отверстия. И эти отверстия не делаются из сеток. К тому же если Ваша скважина находится в каменистых местах, то труба вообще не прокладывается. Просто бурится камень, и внутри камня не монтируется труба. А сверху для удобства монтируется труба метра 2-4.

Во-вторых вибрационный насос типа малыш имеет маленький расход до 1 м3/час. в отличие от самого распространенного погружного до 4 м3/час.

Поверхностный насос

Это насос, который находится вверху и не погружается в скважину. Но у таких насосов имеются недостатки. Об этом ниже.

Подбор диаметров

Подробнее о подборе диаметров написано в разделах:

Гидравлика и теплотехника

Конструктор водяного отопления

Частный случай

Большинство хозяев частных домов предпочтут пойти в магазин и проконсультироваться с консультантом. Консультанты зададут пару вопросов и скажут купить самовсасывающий насос. И сделают фатальную ошибку.

Подробнее о самовсасывающих насосах: Автоматическое водоснабжение с применением самовсасывающего насоса.

Подписаться на рассылку
Оставьте свой E-mail и мы на него отправим новые интересные статьи и видео о расчетах водоснабжения и отопления

Подписаться в телеграм: https://t.me/gidroraschet



Нравится
Поделиться



  Комментарии (+) [ Читать / Добавить ]

    Серия видеоуроков по частному дому
        Часть 1. Где бурить скважину?
        Часть 2. Обустройство скважины на воду
        Часть 3. Прокладка трубопровода от скважины до дома
        Часть 4. Автоматическое водоснабжение
    Водоснабжение
        Водоснабжение частного дома. Принцип работы. Схема подключения
        Самовсасывающие поверхностные насосы. Принцип работы. Схема подключения
        Расчет самовсасывающего насоса
        Расчет диаметров от центрального водоснабжения
        Насосная станция водоснабжения
        Как выбрать насос для скважины?
        Настройка реле давления
        Реле давления электрическая схема
        Принцип работы гидроаккумулятора
        Уклон канализации на 1 метр СНИП
        Подключение полотенцесушителя
        Рециркуляция ГВС схема – лучшее решение!
    Схемы отопления
        Гидравлический расчет двухтрубной системы отопления
        Гидравлический расчет двухтрубной попутной системы отопления Петля Тихельмана
        Гидравлический расчет однотрубной системы отопления
        Гидравлический расчет лучевой разводки системы отопления
        Схема с тепловым насосом и твердотопливным котлом – логика работы
        Трехходовой клапан от valtec + термоголовка с выносным датчиком
        Почему плохо греет радиатор отопления в многоквартирном доме
        Как подключить бойлер к котлу? Варианты и схемы подключения
        Рециркуляция ГВС. Принцип работы и расчет
        Вы не правильно делаете расчет гидрострелки и коллекторов
        Ручной гидравлический расчет отопления
        Расчет теплого водяного пола и смесительных узлов
        Трехходовой клапан с сервоприводом для ГВС
        Расчеты ГВС, БКН. Находим объем, мощность змейки, время прогрева и т.п.
        Температурный режим отопления 90-70, 80-63, 70-55, 60-50
        Байпас попутного смешивания – Шестеренка в отоплении
    Конструктор водоснабжения и отопления
        Уравнение Бернулли
        Расчет водоснабжения многоквартирных домов
    Автоматика
        Как работают сервоприводы и трехходовые клапаны
        Трехходовой клапан для перенаправления движения теплоносителя
    Отопление
        Расчет тепловой мощности радиаторов отопления
        Секция радиатора
        Зарастание и отложения в трубах ухудшают работу системы водоснабжения и отопления
        Новые насосы работают по-другому…
        Расчет инфильтрации
        Расчет температуры в неотапливаемом помещении
        Расчет пола по грунту
        Расчет теплоаккумулятора
            Расчет теплоаккумулятора для твердотопливного котла
            Расчет теплоаккумулятора для накопления тепловой энергии
        Куда подключить расширительный бак в системе отопления?
        Сопротивление котла
        Петля Тихельмана диаметр труб
        Как подобрать диаметр трубы для отопления
        Теплоотдача трубы
        Гравитационное отопление из полипропиленовой трубы
        Почему не любят однотрубное отопление? Как её полюбить?
        Умный подбор диаметров в системе отопления
        Балансировка радиаторов отопления – пошаговое руководство
        Топ 5 проблем в проектировании систем отопления
        Как правильно подобрать и настроить перепускной клапан?
        Идеальная Схема подключения БКН. Бойлер косвенного нагрева
        Как подключить бойлер косвенного нагрева к первично вторичным кольцам?
        Хорошая альтернатива трехходовому клапану на ГВС, если он залипает
        Температурно-Последовательный Гидравлический разделитель
    Регуляторы тепла
        Комнатный термостат - принцип работы
    Смесительный узел
        Что такое смесительный узел?
        Виды смесительных узлов для отопления
    Характеристики и параметры систем
        Местные гидравлические сопротивления. Что такое КМС?
        Пропускная способность Kvs. Что это такое?
        Кипение воды под давлением – что будет?
        Что такое гистерезис в температурах и давлениях?
        Что такое инфильтрация?
        Что такое DN, Ду и PN ? Эти параметры нужно знать сантехникам и инженерам обязательно!
        Гидравлические смыслы, понятия и расчет цепей систем отопления
        Коэффициент затекания в однотрубной системе отопления
        Гидравлический парадокс в системе отопления. Загадка № 4
    Видео
        Отопление
            Автоматическое управление температурой
            Простая подпитка системы отопления
            Теплотехника. Ограждающие конструкции.
        Теплый водяной пол
            Насосно смесительный узел Combimix
            Почему нужно выбрать напольное отопление?
            Водяной теплый пол VALTEC. Видеосеминар
            Труба для теплого пола - что выбрать?
            Теплый водяной пол – теория, достоинства и недостатки
            Укладка теплого водяного пола - теория и правила
            Теплые полы в деревянном доме. Сухой теплый пол.
            Пирог теплого водяного пола – теория и расчет
        Новость сантехникам и инженерам
        Сантехники Вы все еще занимаетесь халтурой?
        Первые итоги разработки новой программы с реалистичной трехмерной графикой
        Программа теплового расчета. Второй итог разработки
        Teplo-Raschet 3D Программа по тепловому расчету дома через ограждающие конструкции
        Итоги разработки новой программы по гидравлическому расчету
        Первично вторичные кольца системы отопления
        Один насос на радиаторы и теплый пол
        Расчет теплопотерь дома - ориентация стены?
    Нормативные документы
        Нормативные требования при проектировании котельных
        Сокращенные обозначения
    Термины и определения
        Цоколь, подвал, этаж
        Котельные
    Документальное водоснабжение
        Источники водоснабжения
        Физические свойства природной воды
        Химический состав природной воды
        Бактериальное загрязнение воды
        Требования, предъявляемые к качеству воды
    Сборник вопросов
        Можно ли разместить газовую котельную в подвале жилого дома?
        Можно ли пристроить котельную к жилому дому?
        Можно ли разместить газовую котельную на крыше жилого дома?
        Как подразделяются котельные по месту их размещения?
    Личные опыты гидравлики и теплотехники
        Вступление и знакомство. Часть 1
        Гидравлическое сопротивление термостатического клапана
        Гидравлическое сопротивление колбы - фильтра
    Видеокурс
        Скачать курс Инженерно-Технические расчеты бесплатно!
    Программы для расчетов
        Technotronic8 - Программа по гидравлическим и тепловым расчетам
        Auto-Snab 3D - Гидравлический расчет в трехмерном пространстве
    Полезные материалы
    Полезная литература
        Гидростатика и гидродинамика
    Задачи по гидравлическому расчету
        Потеря напора по прямому участку трубы
        Как потери напора влияют на расход?
    Разное
        Водоснабжение частного дома своими руками
        Автономное водоснабжение
        Схема автономного водоснабжения
        Схема автоматического водоснабжения
        Схема водоснабжения частного дома
        Заработок на блоге через партнерскую программу
    Политика конфиденциальности
    Ответы на вопросы
        Клиент 1
        Клиент 1. КПД котла





Ручной гидравлический расчет своими руками




Получить книгу




Гидравлический расчет своими руками




Ручной расчет отопления без программ




Расчет систем отопления




Видеокурс: Проектирование своими руками




Видеокурс: Расчет теплопотерь дома




Расчет теплопотерь дома в программе 3D




Расчет системы отопления в программе 3D




Расчет водоснабжения и отопления в программе 3D


Добавлен: 21.10.15 Путь на страницу: https://infosantehnik.ru/str/63.html
Статистика

Политика конфиденциальности

Яндекс.Метрика